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Abstract:  Our research activities during the last eight years from 2006 to 2013, with the 

grant supports from Nano National programs, NSC, Taiwan and AOARD, have been pushing 

the material limits of III-V InGaAs and GaN metal-oxide-semiconductor (MOS) systems using 

high  dielectrics. In the third year of the funding, with the capabilities of atomic-scale probing 

and manipulating the high k oxides/semiconductors interfaces, we have established the 

correlations between electronic structures and electrical properties essential to understand the 
Fermi level pinning/unpinning mechanism of the interfaces between metal/oxide and 

oxide/semiconductor. we have successfully continuously kept our world-leading expertise of 

high- dielectric growth on InGaAs by achieving world record drain current of 1.8 mA/m, 

transconductance of 0.80 mS/m, and low sub-thresholds in a self-aligned inversion-channel 

InGaAs metal-oxide-semiconductor field-effect- transistor of 1 m gate length. In-situ ultra-

high vacuum deposited Y2O3 and HfO2 and atomic-layer-deposited (ALD) Al2O3 and HfO2 2-3 
mono-layers thick on freshly grown In0.53Ga0.47As, with an Al2O3 cap, were employed as a gate 

dielectric.  

 
Furthermore, high quality nm-thick Gd2O3 and Y2O3 (rare-earth oxide, R2O3) films have been 

epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R2O3 epi-

layers exhibit remarkable thermal stability at 1100C, uniformity, and highly structural 

perfection. Structural investigation was carried out by in-situ reflection high energy electron 

diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial 

stage of epitaxial growth, the R2O3 layers have a hexagonal phase with the epitaxial 
relationship of R2O3 (0001)H[11-20]H//GaN(0001)H[11-20]H.  With the increase in R2O3 film 

thickness, the structure of the R2O3 films changes from single domain hexagonal phase to 
monoclinic phase with six different rotational domains, following the R2O3 (-201)M[020]M//GaN 

(0001)H[11-20]H orientational relationship. The structural details and fingerprints of hexagonal 

and monoclinic phase Gd2O3 films have also been examined by using electron energy loss 
spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase 

transition depending on the composing rare earth element. 
 

Introduction: Hetero-epitaxy between two dissimilar materials has been the key for 

producing artificial structured materials, the building blocks for new sciences, novel devices 
and advanced technologies.1-7  Particularly, the epitaxial growth among oxides and 

semiconductors has always been scientifically intriguing and technologically relevant.3-8  One 

notable example is the successful growth of single crystal GaN on sapphire and Si(111), which 
has led to the recent commercialization of solid state lighting and high power devices.3-5 The 

growth of single crystal Gd2O3 on GaAs(001)6 is another example, leading to the first 
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demonstration of inversion-channel GaAs metal-oxide-semiconductor field-effect-transistors 
(MOSFETs),9 timely for the ultimate complementary MOS (CMOS) technology.10,11 

 

Gd2O3 and Y2O3 of cubic phase were found to grow epitaxially on Si, Ge, and GaAs. The 
lattice constants of cubic Gd2O3 and Y2O3 are 10.8 and 10.6 Å, respectively, which are 

approximately twice those of GaAs, Si, and Ge, being 5.65, 5.43, and 5.65 Å , respectively. The 
oxides deposited on Si(111) exhibit the same (111) surface normal.12 The oxides deposited on 

the (001) oriented GaAs,6 Si,13 and Ge14, however, have (011) parallel with the (001) normal 
of the semiconductors. The in-plane lattice spacing of the oxide (011) does not match well 

with those of GaAs,15 Si,13,16 and Ge,17 indicating the bond arrangement and the energy 

consideration at the oxide/semiconductor interfaces are more critical than the crystalline 
symmetry.  

 
Besides the epitaxial growth, an effective passivation of high  dielectrics on 

semiconductor has been intensively studied as higher device performance demands smaller 

device sizes and thinner gate dielectrics. GaN and its related compounds, which have been 
used for high-temperature high-power RF electronics because of the large critical breakdown 

fields and high saturation velocities,18 are now being considered for the post Si CMOS. Recently, 
GaN MOSFETs have been demonstrated using MgO,19,20 Al2O3,21 HfO2,22 and Ga2O3(Gd2O3)23 

as the gate dielectrics. For pushing the GaN MOS technology, the equivalent oxide thickness 
(EOT) of the gate dielectric is required to be much less than 1 nm.11 Therefore, the dielectric 

constant of the gate dielectric has to be enhanced. Moreover, self-aligned inversion-channel 

GaN MOSFETs may require the gate dielectric to be of single crystal as amorphous films tend 
to form poly-crystalline resulting from the high temperature source/drain (S/D) dopant 

activation process; the gate dielectric needs to sustain rapid thermal annealing (RTA) process 

up to 1100C for at least 5 mins.24 High-quality hexagonal phase Gd2O3 with good crystallinity 

has been successfully deposited on c-plane GaN and shows excellent electrical properties.25,26 

More recently, the monoclinic Gd2O3 and Y2O3 layers consisting of six different rotational 

domains on GaN have also been reported.27-29 The monoclinic phase of rare earth oxides is not 
energetically favorable under ambient condition. The presence of these non-ambient phases 

is attributed to epitaxial stabilization.   
 

In this work, we have systematically scaled down the thickness of the molecular beam 

epitaxy (MBE) deposited Gd2O3 and Y2O3 on GaN from 10-20 nm to 1-2 nm. With decreasing 
layer thickness to 2-4 nm, the structure of the rare-earth oxides changes from monoclinic 

phase to hexagonal phase. There are great similarities on the structural properties between 
Gd2O3 and Y2O3. The discussion will, therefore, focus on Gd2O3. The structural 

characterizations were performed by high resolution X-ray diffraction (HRXRD) with 

synchrotron radiation.  
 

Results and Discussion:  The RHEED pattern of the starting GaN surface was a streaky 
reconstructed (2 ×  2) along GaN <11 2̅0> and <10 1̅0>, respectively. With the Gd2O3 

thickness larger than 0.8 nm, the patterns turned to a streaky (1 × 1) and with the thickness 

increasing to >5 nm, a reconstructed (3 × 2) appeared, which remained unvaried all the way 

to 20 nm;28 The patters remained streaky during the growth, indicating two-dimensional 

growth. From the systematic X-ray diffraction study as will be discussed later, the initial growth 
of Gd2O3 has yielded a hexagonal phase with surface normal (0001) and in-plane axes of 

Gd2O3 being parallel to the corresponding axes of GaN.  
 

The X-ray diffraction scans along the surface normal of the Gd2O3 samples with different 
oxide thickness are shown in Fig. 1. The intense sharp peaks of GaN (0002), GaN (0004) and 

sapphire (0006) reflections are, respectively, centered at 2.0, 4.0, and 2.395 rluGaN, the 

reciprocal lattice unit of GaN along its c-axis with 1 rluGaN = 2π/cGaN = 1.212 Å -1. The oxide 
peaks are those with the periodic thickness fringes, which are caused by the interference 

between the X-rays reflected by the top surface and buried interface. The presence of the 



pronounced fringes revealed a very smooth surface/interface and good crystalline quality of 
the Gd2O3 epitaxial layer on GaN.  

 

For Gd2O3 films with thickness of 1.5, 2.2, and 3.2 nm, aside from the main substrate 
signals, two broad oxide peaks were centered at ~1.73 and ~3.44 rluGaN. The broadness came 

from the short structural coherence length limited by the small layer thickness. The inter-
planar spacing corresponding to these peaks was close to that of monoclinic phase (4̅02)M, 

(8̅04)M and hexagonal phase (0002)H, (0004)H planes; it would be very difficult to assign 

phases based on the observed reflections alone.28 However, for thicker Gd2O3 films of 4.3 and 

10 nm, two additional peaks centered at ~0.87 and ~2.61 rluGaN were found. Based on JCPDS 
cards (No 42-1465),30 these latter two peaks correspond to (2̅01)M and (6̅03)M reflections, and 

no allowed reflection belonging to the hexagonal phase exists in the nearby region. The 

absence of these two peaks in the films less than ~4 nm thick, therefore, indicates that the 
thinner Gd2O3 films have a hexagonal structure. The two oxide peaks of the three thinnest 

oxide layers were then indexed as the (0002)H and (0004)H reflections of the H-Gd2O3. For 
oxide films with thickness above 4 nm, the broad peaks centered at 0.87, 1.75, 2.61, 3.48 and 
4.35 rluGaN were indexed as (2̅01)M, (4̅02)M, (6̅03)M, (8̅04)M and (10̅̅̅̅ 05)M reflections of M-

Gd2O3, respectively.  

 
The scans along surface normal alone would not provide the off-normal crystallographic 

information, which is needed for accurately determining the symmetry of the oxide films and 
the alignment between the oxides and the substrates. Lateral radial scans were thus performed 
along the GaN in-plane <112̅0 >H  direction, shown in Fig. 2. The measurements were 

performed in the grazing incidence diffraction geometry by keeping the surface normal almost 
perpendicular to the vertical scattering plane. For the Gd2O3 layers of thickness less than 4 

nm, in addition to the narrow GaN )0211(  reflection centered at 1 rluGaN, the reciprocal lattice 

unit of GaN along the lateral direction with the magnitude of )3/(4 GaNa  = 2.274 Å -1, a 

broad peak appears at 0.855 rluGaN. Both peaks exhibit 6-fold symmetry in azimuthal  scans 

against the surface normal (not shown), revealing the hexagonal crystalline structure. The 
broad peak was indexed as the H-Gd2O3 (112̅0)H reflection, which is aligned with the GaN 

)0211(  reflection. For the samples with Gd2O3 thickness greater than 4 nm, the oxide peak 

splits into two broad peaks, centered at 0.835 and 0.88 rluGaN, respectively. Even though their 

azimuthal scans also have 6 evenly spaced peaks, each peak further splits (not shown). The 
observed 6-fold symmetry and peak splitting can be accounted for by the coexistence of 6 

rotational domains of M-Gd2O3 with M)012( normal and each domain has its [020]M axis 

aligned with one of the 6-fold symmetric GaN  0211  direction.28 The two peaks at 0.835 

and 0.88 rluGaN in Fig. 2 are indexed as M)133(  and M)200(  , respectively. 

 
To further verify the crystalline structure of the hetero-epitaxial system, we performed 

reciprocal space mapping (RSM) around Gd2O3 H)0111( reflection in the GaN h-l plane. A 

clean oval-shape peak was obtained from the thin layers with thickness less than 4 nm, as 

illustrated in Fig. 3(a), (b) and (c), indicating that H-Gd2O3 possesses only one domain. The 
reduction in the profile elongation along the l direction reflects the increase of vertical 

structural coherence length associated with the increasing layer thickness. As the thickness 
increases beyond 4 nm, the peak profile gradually evolves into a cluster of 4 peaks. According 

to the model of ( 2 01)M oriented M-Gd2O3 with six rotational domains, the four maxima in the 
RSM shown in Fig. 3(d), (e), and (f) are associated with the Gd2O3 (4̅01̅)M , (3̅ ± 10)M , 

(1̅ ± 12)M, and (003)M reflections, in the order of increasing l value, belonging to six different 

rotational domains.28 The evolution of the Gd2O3 reflection from a single maximum to four 

peaks in the RSM shown in Fig. 3 as the oxide thickness increases attest the structural 
transition from the hexagonal to the monoclinic phase and the critical thickness is 



approximately 4 nm.   
 

By fitting the angular positions of many reflections, we derived the lattice parameters of 

the hexagonal phase to be a = b = 3.75 Å and c = 5.94 Å, similar to the results of ab initio 
energetic calculations based on the density functional theory (DFT) and projector augmented 

wave (PAW) pseudo-potentials method.31 Similarly, the monoclinic phase lattice constants are 
determined to be a = 13.965 Å, b = 3.595 Å, c = 8.787 Å, and β = 101.34o. According to the 

phase diagram, bulk Gd2O3 exists in three polymorphic forms: cubic ( 3Ia ), monoclinic (C2/m), 

and hexagonal ( 13mP ) at temperature below ~2,500K and the cubic phase with the bixbyite 

structure is the one stable at the ambient condition.32 Both the cubic and monoclinic phases 
have been reported existing at room temperatures.32-34 The hexagonal phase only exists at 

high pressure or high temperature. It is thus difficult to accurately determine the strain state 
of the hexagonal phase oxide layers because of the lack of ambient condition data to compare 

with. Nevertheless, the lattice parameters of H-Gd2O3 layer remained practically unchanged 
and their values are close to the theoretic prediction, implying the lattice is nearly fully relaxed.  

 

Summary:  Gd2O3 and Y2O3 epi-layers on GaN (0001) have the hexagonal phase 
with their thickness less than a critical value tc (3~4 nm), as stabilized by epitaxy. The 

hexagonal to monoclinic phase transition occurs as thickness exceeds tc. The stabilizatio
n of the hexagonal phase at a few nm-thick with high thermal stability, a high dielectri

c constant, and a low interfacial density of states strongly favors the application of sing

le crystal Gd2O3 and Y2O3 as gate dielectrics for advanced GaN MOS devices with low 
EOT. 
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Fig. 1: XRD longitudinal scans along surface normal of samples with different Gd2O3 layer 

thickness.    



 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

Fig. 2: Intensity distributions of in-plane radial scans along GaN [112̅0]H direction for Gd2O3 

samples with thickness from 1.5 to 20 nm. 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
Fig. 3: The 2D reciprocal space maps in the GaN h-l plane near the Gd2O3 (101̅1)H reflection 

for the samples with a (a) 1.5 nm, (b) 2.2 nm, (c) 3.2 nm, (d) 4.3 nm, (e) 10 nm, and (f) 20 

nm thick Gd2O3 epi-layer. 
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